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Abstract—The basic regularities of the thermal regular regime theory developed by G. M. Condratjev
and its practical application to the thermotechnical measurements are discussed in this paper.

Under the thermal regular regime of a body or a system of bodies one understood such a process of
cooling or heating the system when: (1) the initial temperature distribution in the system does not
influence the law of temperature change; (2) the law of temperature change is expressed in a simple
mathematical form; (3) this law is general for all the points of the system.

These regularities of the thermal regular regime permitted : (a) to work out a number of methods to
determine the thermal characteristics of different materiais; (b) to determine the thermal inertia of
thermometers and pyrometers; (c) to obtain the relations to calculate the kinetics of cooling or heating

the complicated thermotechnical apparatus and equipment.

Résumé—Les conditions de régularité qui sont A la base de la théorie du régime thermique régulier
développée par G. M. Condratjev et son application aux mesures thermiques de la technique sont
précisées dans cet article.

Par régime thermique régulier d’un corps ou d’un ensemble de corps, on désigne un processus dc
refroidissement ou de chauffage du systéme tel que: 1° la distribution des températures initiales dans le
systéme n’influence pas la loi d’évolution des températures; 2° la loi d’évolution des températures
s’exprime dans une forme mathématique simple; 3° cette loi est générale et s’applique en tout point du
systéme.

Ces conditions de régularité du régime thermique régulier ont permis: (a) d’établir un certain
nombre de méthodes pour ia détermination des caractéristiques thermiques des différents matériaux,
(b) de déterminer I'inertie thermique de thermométres et pyrométres, (c¢) d’obtenir les relations
permettant de calculer la cinétique de refroidissement ou de chauffage dans le cas d’appareillages tech-

niques compliqués.

In dieser Arbeit werden die Grundziige der Theorie des reguliren thermischen
Zustandes, nach G. M. Condratjev, und ihre praktische Anwendung auf wirmetechnische Messungen
behandelt.

Unter dem reguliiren thermischen Zustand eines Korpers oder eines Systems von Korpern versteht
man einen Kiihlungs- oder Erwiirmungsvorgang, bei dem (1.) die anfingliche Temperaturverteilung
in dem System das Gesetz der Temperaturinderung nicht beeinfluit, (2.) das Gesetz der Temperatur-
inderung in ciner einfachen mathematischen Form ausgedriickt ist, (3.) dieses Gesetz fiir alle Punkte
des Systems giiltig ist. :

Diese Grundziige des reguliiren thermischen Zustandes erlauben (a) eine Anzahl von Methoden zur
Bestimmung der thermischen Eigenschaften verschiedener Materialien anzugeben, (b) die thermische
Trégheit von Thermometern und Pyrometern zu bestimmen, (c) die Kinetik der Kithlung oder Heizung

von komplizierten wirmetechnischen Apparaten zu berechnen.

Abstract—B cTatbe pacCMATPHBAIOTCA OCHOBHBIE 3aHOHOMEPHOCTH TEOPMII TEemJIOBOrO pery-
JIApHOro pexuMa, paspaGoranHsie I'. M. HomaparteessiM, u €€ mpuMeHeHHe B NpaKTHKe
TENJIOTeXHHYECKNX UaMepeRuit.

TenoBeIM Pery-IAPHEM PEKMMOM Tesla MJIH CHCTEMB TeJ HA3HBAETCA TaKoit mpomecc eé
HarpeBaHusA WM OXTKISHUA IPH KOTOpoM: (1) Ha 3aKOH N3MEHEHUA TEMIePaTyPH He BJIMAET
HayaJlbHOe pacnpelesleHNe TEMOEP&TYPH B CHCTeMe, (2) 3aKOH U3MEHeHHA TeMmepaTypsl
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HMeeT MpoCToe MaTeMaTH4YeCKOe BHIpaiieHue, (3) 9TOT BAKOH ABJAETCA OGIIMM I BCeX TOYEK

CHCTEMHL.

OTH BAKOHOMEDHOCTH TEIJIOBOTO DeryJjfipHOTO pesuMa Nossoauwu: (a) paspaborars
PAN METOJIOB ONpeXesieHUsA TeIIOBHX XaPAKTePUCTHK Pa3IHYHAX MaTePHalos, (5] oapexeanTs -
TeIJIOBYI0 MHEPLUIO TEPMOMETPOB J IMPOMETPOB, (B) HONYYHThL PACUETHHE COOTHOIIEHMA
IJIA- HCCTIENIOBAHNA KNMHETHKHM OXJKIEAHA MM HArPEBaHMA CIOMKHHX TemJIOTeXHUYECKUX

annapaToB ¥ YCTPOHCTB.

CoNDRATIEV  has developed experimental
methods serving to determine the thermophysical
charactersitics of non-metallic materials. These
methods are based on the general regularities of
the unstationary temperature field of a body or
system of bodies in cooling or heating processes.
It is known that the general solution of the
Fourier equation for the problem of cooling of
a uniform and isotropic body of any configura-
tion is expressed by an infinite series, the terms
of which have been distributed along the rapidly
decreasing exponential functions of time
t—te= Z AU;exp (—m;7) m
i=0
so that the positive numbers m,, m,, . . . are the

series of continuously increasing discrete num-
bers

O<mey<m<m<... 2

Uy, U, ... are the finite functions of body
points co-ordinates;

Ay, Ay, . .. are also finite and constant num-
bers independent of time and co-ordinates.
The functions of U, satisfy the boundary
conditions

aU;
(5 + o)

The functions of A, are determined from the
initial conditions

=0

s

3

3 AU, = fix, 3, 2)
i=0

@)

The following symbols are assumed here:
t = Hx, y, z, ) is the temperature of a
body at the point (x, y, z) at the time =; ¢,
is the medium temperature; oU,/on is the
derivative of the function U, along the external
normal to the outside surface of the body S;
fix, y, z) is the function which characterizes the
initial distribution of temperatures; 2 = a/A,

where a is the heat transfer coefficient and A is the
thermal conductivity coefficient. For the latter
coefficients we assume that they are independent
of temperature as it is generally used in the theory
of heat conduction. The kinetics of cooling a
body has three stages. The first one is qualified
by the strong influence of the initial state of a
body upon its temperature field. In general, the
initial state of a body is occasional and quite
independent of both the system characteristics
and the conditions under which the cooling
process is going on. In the course of time the
influence of the initial peculiarities of the tem-
perature field upon further change is smoothed.
From the “irregular stage™ the process becomes
“regular” and the influence of non-uniformity
of the initial temperature distribution no longer
has any effect; the law of change of the tem-
perature field has the ordinary exponential form

&)

Condratjev gives a generalization of the
above theorem for a system of bodies.t

Suppose that the thermal characteristics:
thermal conductivity A;, thermal diffusivity a;,
specific heat ¢; and also the density y, depend
upon the co-ordinates of the points of the given
part (j) of the system (if the material, for
example, is non-homogeneous) but it is assumed
here that A, a;, ¢;, y; are independent of tem-
perature in the temperature ranges observed in
the system during the process.

Under these conditions the principle about the
conversion from an irregular state to a regular
regime, proved by Boussinesq for any uniform
and isotropic body, is valid for the system of
bodies as well.

So we see that the rate of change of In

lyeg — 1o = AOUO ¢Xp ("mo"')

t By the system of bodies one may understand a whole
complex of various solids which are in close contact.
If the components of a system are liquids then we
suppose that a field of temperature is uniform.
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(t — t,) is the same for all the points of the
system

0
5 In(t—1t)=-m (6)

Therefore the temperature field of a body will
be expressed by co-ordinates =, In (+ — t,) after
the regular regime has been established, and by
the system of straight parallel lines with the
negative angle coefficient equal to —m, as shown
in Fig. 1. This is a typical feature of the regular

M

My

M

og {(7~1¢)

-

Fic. 1. The temperature field of the system at its
regular cooling or heating.

regime and is only essential for it. m plays an
important role in the theory of regular regime
and it is known as the rate of cooling, since
it characterizes the rapidity with which the body
is cooled.

The theoretical and experimental researches
dealing with the cooling of bodies in various
mediums indicate that the rate of cooling
depends upon the heat transfer coefficient, the
thermal characteristics of a body, and its size
and configuration.

The rate of regular cooling of a uniform and
isotropic body at the final value of heat transfer
coefficient is proportional to the surface of the
body and inversely proportional to its total
heat capacity (C).

The coefficient of proportionality is a product
of the heat transfer coefficient « and the criterion

G. N. DULNEV

¢ which is decreasing monotonously as a is
increasing.

M

IR%}

—t
-t

o

0= ®)

where the criterion ¢ characterizes the non-
uniformity of the temperature field in a body
and is numerically equal to the ratio of the
average surface temperature of a body to its
average volumetric temperature of superheating.

If a(Bi) = 0, then ¢ = |
-0

lim m = mq which corresponds to Bi = « and
the thermal diffusivity of the material are directly
proportional:

o

and a(Bi) -

a =Kmy ¢))

where the coefficient of proportionality X depends
only on the size and the form of a body.

The coefficient K serves as a measure of thermal
inertia of a given model: the greater the value
of K the smaller is m and thus the slower the
cooling of a body proceeds, irrespective of what
material the body is made.

K, in the theory of regular regime is called
a coefficient of a body shape. This coefficient
can be calculated in two ways: either at Bi >
or considering the boundary conditions '

Us=0 (10)

and we shall define m«. In many works on the
regular regime theory [2-4] the value of the form
coefficient has been calculated for bodies of
various configurations.

The application of equation (7) was in prac-
tice restricted by the difficulty of calculating the
criterion . The methods of calculation used for
this criterion have been developed only for
bodies which have a simple configuration.
Later on Condratjev and his followers Dulnev
and Jaryshev proved that the equation (8) can
be expressed in the more general form [5-7]:

M = yH (1n

where M = m/m« = mK]/a is the criterion of
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the body’s thermal inertia;: H = (a/ANKS/V) is
the generalized Biot criterion; ¥ and S are the
volume and the body’s external surface, res-
ectively.
For bodies of various configurations an
approximate analytic expression for the criterion
¢ has been found:

1
= VHEF1437TH + 1)

(12)

The equation (12) defines the value of criterion
¢ for bodies of various configurations with
an exactness sufficient for practical calculations
{7. 8.

If we picture the dependence between the rate
of cooling of a body and the coefficient of heat
transfer (Fig. 2) then the curve will be of a non-
general character which is valid for the concrete

el

/

% @ 9 @ o

-4

FIG. 2. The asymptotic law of m-rate increase for the
regular body cooling when the heat transfer coeffici-
ent increases.

case where the configuration and the size of a
body as well as the characteristics of the material
are given. The dependence between the criteria
M and H plotted in Fig. 3 is of a general type and
it is valid with sufficient exactness for non-
uniform isotropic bodies of various configura-
tions and sizes which are made of solid or dry
materials.

(a) The thermo-insulating nucleus of any
arbitrary form with a metallic cover round it.}

+ The “thermo-insulating nucleus” is defined as a part
of a body or a system with a non-uniform temperature
distribution. The “thermo-insulating cover” is a part of a
body or a system with a uniform temperature distribution
for: the given experimental conditions.

-0
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Fic. 3. The approximated universal dependence
M = M(H) for regular cooling or heating of a body
which has any configuration.

The previous criteria are valid for these sys-
tems and to calculate them we can use formulae
(11) and (12):

13)

where Ceov and Seov are the total heat capacity
and a cover external surface; m is the rate of
cooling of the whole system and the other
symbols relate to the nucleus.

(b) A metallic nucleus with a thin thermo-
insulating cover round it.

Suppose we neglect the heat capacity of the
cover (Ceov) in comparison with the heat capacity
C of the nucleus then the regular thermal regime
can be expressed by:

C 1 8\ _ 4
mslat 2.5) -

i

(14)

where m is the cooling rate of the whole system;
C and S are the heat capacity and a nucleus
surface; A; and 8, are the thermal conductivity
coefficient and the thickness of the ith layer of
the cover;} a is the heat transfer coefficient of
the system.

(¢c) The simplest two-component bodies are
spherical and plane bi-calorimeters.

+ A cover may consist of several layers.
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We shall define “bi-calorimeters of regular
regime” as systems consisting of a metallic
nucleus with a layer of close-fitting heat insulat-
ing material, which has finite heat capacity. In the
spherical bi-calorimeter the nucleus (1) and the
sphere cover (2) are arranged concentrically (see
Fig. 4). In the plane bi-calorimeter the flat-
parallel plate has a heat insulating material of
thickness 8, round it (see Fig. 5).

2R

FIG. 5. A plane bi-calorimeter of a symmetric type.

Let us introduce the following values: ¢ =
C,/S8! is the nucleus constant; / = R,/R, is the
ratio of nucleus and cover radii; P, = 8,/A, is
the thermal resistance of the heat insulating layer
and some new criteria such as

_1+i4+B G

N T Coon

§? =

Zzlw
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m=1"
a

Then a regular regime for all kinds of spheres
with a metallic nucleus will be described by
equation [2]:

1 —I4 — NS?

(1—1P4 l

where 4 = A(S) is a dimensionless parameter
an expression of which is given in [2].
Notethat 0 <K N 00,0 K<IKL<LO0OKLBL L
When we have such a case as N > 2, which is
more frequently used, it is quite possible to
reduce equation (15) to a simpler approximate
form '
1— 1T — (1 +1+B)/3IJIN) 16)
(= (

The dependence B = f(N,]) for all kinds of
N and [ has been plotted in Fig. 6. Analogous

B =~

I
0 e

- /— ) - -
os} 7-—‘ \T\\\c-o
0‘6: / \\l'°'3

/ (=1} (=07
o |
o2 |

N

FiG. 6. The dependence B = f(N,e) for the spherical
bi-calorimeter at a — <.

formulae have been derived for a plane bi-
calorimeter [2]. Here we shall take only the
formula for the case @ = co. The criteria B and
N for the plane bi-calorimeter are of the type

B=gPm N=SL an
CCOV

The graphical relation between criteria B and
N has been presented in Fig. 6 and the curve
corresponds to a plate for which / = 1.

In 1954 Condratjev and Dulnev gave a
generalization of the thermal regular regime
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theory for heating both of bodies and of systems
under the action of the energy sources inside the
body or at its boundary [11]. .

The theory is based on the following assump-
tions: (a) the capacity of energy sources (or sinks)
is constant in time; (b) the ambient temperature
is also constant; (c) the heat transfer coefficient
and material thermal properties are independent
of the temperature.

Analysing the exact solution of the problemt
of body heating under the action of the internal
energy sources one may come to the following
conclusion as to why in some time the process
becomes regular, when the temperature at any
point of the body is changing according to the
simple exponential law, i.e.

In(teo — t) = —mr + G*(x,y,2) (18)

where m is the rate of heating and G* is the co-
ordinate function.

The analysis of the heating of a body of any
arbitrary configuration under the influence of an
energy source will bring us to-the conclusion that
the rate of heating has the following dependence
on the heat transfer coefficient:

m=apr 2 (19
where  yr = G208 20)

the indexes S and V mean the average of the
corresponding values along the body surface
and its volume.

(a) The rate of heating either a body or a
system is independent of the sources of power
and their location in the system and is numerically
equal to the rate of cooling (the sources of power
are equal to zero).

(b) The rate of heating is independent of
the co-ordinates.

(c) The shape coefficient X of a body which is
heated by energy sources has the same physi-
cal meaning as the shape coefficient K’ of a body
which is heated in the medium. K and K’ are
equal.

t Later on we shall speak about the body heating
under the influence of energy sources. All conclusions are
valid for the case of a body cooling under the influence of
energy sinks.

157

(d) The criteria y* and ¢ have a different
physical meaning, but numerically they are
equal. .

(e) The temperature ¢, at any point j of a body
which is in a stage of regular regime, is
subordinated to the following equation:

Loy 1
mit)o dr (1w

where (1) is the stationary temperature at the
point j. Taking into account the first four results
we can use the theory given above of a regular
regime to calculate the numerical values of m
and y*.

Now we can show that a stationary tempera-
ture (#;) of any point j of the system depends
upon the sources of power in the following
way [8]:

@n

—tj=-"l

@) =1= zwlPi Fy (22)
where P; is a total output, at i-region of the
bodies system; n is a number of the system
regions; Fy;, some coeflicients which are inde-
pendent of either temperature or the sources’ out-
put. To determine these coefficients it is necessary
to solve an ordinary system of equations for
the stationary temperature field.

If we consider the heating of a body under
the influence of many energy sources we can
obtain an approximated solution of a problem
supposing that the temperature field becomes
regular from time » = 0. In this case the tem-
perature at any j-point will be determined by
the approximated formula

1, & {1 — exp (—m1)} ,%.P‘ Fy 3

The peculiarity of the above discussed regular
regime lies in the fact that after the regular regime
has already started the peculiarities of the
initial state do not influence the temperature field.
The same phenomenon of the regularization of
thermal regime takes place in other cases. For
example, if the temperature of the external
medium 7, changes at a constant velocity w = 0
then after a lapse of time the temperatures of
all the points of the system will change with a
constant velocity equal to w. Such a regular
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regime was called a regular regime of the second
kind and its regularities for bodies and systems
of bodies have been studied in detail [12-14].

The regularization of the temperature field
of a body for the oscillating change of the
external temperature has not yet been thoroughly
studied.t In this case we also observe the follow-
ing regularity: the temperature at any point of
the system is in the range of a mean value and has
the same oscillating period for the ambient tem-
perature 2, 10, 14].

An analysis of various cases of temperature
field regularization made it possible to calculate
the general thermal determination of a regular
regime. Under the expression the ‘‘regular
thermal regime™ of a body or a system of bodies
one may understand such a regime for the
change of a system’s temperature having the
following properties:

(a) In the course of time a system’s initial state
does not influence the regularity of temperature
change.

(b) The regularity of a temperature change
with space-time has a simple mathematical
expression.

(c) This rule is general for all points of the
system.

The practical application of the regular regime
theory: The regular regime theory is useful in
solving various problems of practical value; in
particular this theory is the basis of a technique
for the determination of the thermal character-
istics of materials.

(a) The determination of the material’s thermal
characteristics

The high speed methods based on this theory
are fit for tests with any substance. Here we
give only some of these methods.

The experimental part of the work according
to any method of regular regime lies in the deter-
mination of the cooling rate m either of a body
or of a system. For this purpose we generally use
a differential thermocouple, one junction of
which is in the body and the other in the
medium. Observing the temperature change in
space with time when a body is cooled in a

t The so called regular regime of the third kind.
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liquid or a gas it is not difficult to define the rate
of cooling, m, graphically:

In(t — t) = f(7).

The thermocouple junction can be at any point
of a body since according to the theory the
rate is independent of co-ordinates.

If the experiment is carried out in conditions
of intensive heat transfer and « > 25AV/KS, it
is possible to consider the heat transfer co-
efficient, assumed equal to infinity; using
formulae (24) and (9) we find the rate of cooling
and the thermal diffusivity of the material.

Cooling at very low values of the heat transfer
coefficient and with a body of small size the
temperature distribution in the body will be
uniform. The criterion 4 is near unity and
taking formula (8) we shall find the heat capacity
of the material. The possible sizes of a sample
will be evaluated as:

KS < 0-03A

V = e

Thus the error in the determination of the
thermal capacity caused by non-uniformity of
the temperature field will not exceed 2 per cent
[10, 16]. If we know the rate of a body’s cooling
at two different heat transfer coefficients,
using formulae (11) and (12), we shall find the
thermal characteristics of the material either (A
and ¢) or (g and A), and the samples may be of
any configuration [15].

In the cases discussed above it is not necessary
to put samples into the apparatus. The exception
is made only for dry substances and fibrous
materials, which are usually put into metallic
jars with thin walls. In this case we calculate
using the formula (13), which takes into account
the cover effect upon the rate of cooling.

Bi-calorimeters based on the regular regime
theory are being practised on a large scale to
measure the thermal properties of solids and
liquids (see item 4). Three types of bi-calori-
meters have been developed : plane, spherical and
cylindrical. All three have a massive metallic
nucleus in the centre with a thermocouple placed
into it. The material under test is put between
the metallic nucleus and the metallic cover of
the apparatus (Fig. 7).
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The preheated apparatus is intensively cooled
in a liquid and the rate of cooling is determined
according to formula (24).

Then the thermal conductivity of the material
under test is determined by formulae (17) and
(18) (see [9, 10, 16]).

FiG. 7. A spherical bi-calorimeter. (1) A porcelain

two-channel tube for a thermocouple. (2) An ebonite

and textolite tube joined with the metallic nucleus
(3). (4) A heat insulator under the test.

The application of bi-calorimeters for testing
heat protective properties of clothing and fabrics
has to be studied separately. The apparatus used
for this has a simple mounting: the bi-calorimeter
enveloped in a fabric has air freely flowing
through it (this can be quiet or flowing, rarefied,
dry or humid, etc.). The methods for the deter-
mination of heat protective properties of clothing
and fabrics based on the regular regime theory,
which is of a high speed by its nature, make it
possible to collect information about the be-
haviour of different fabrics, depending on
meteorological data, in a short space of time [2].

(b) Determination of the heat transfer coefficient
and total emissivity by the regular regime
methods
A new method for the determination of the

heat transfer coefficient of various bodies, and

total emissivity of any coverings has been
developed using formulae (9) and (20). A model
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of high thermal conductivity material has been
made to achieve this aim. Observing its process

of cooling it is possible to determine the co-

efficient of heat transfer depending on tempera-
ture for a very short time. The total emissivity
was measured analogically [10, 18, 19].

(c) Determination of thermal inertia of thermo-
meters and pyrometers

This problem is of great importance for
meteorology, experimental physics and en-
gineering measurements. Theréfore from the
very start of exact thermometrics attention was
drawn to it and bécame a subject of numerous
investigations which are not finished even now.
The theory of a regular thermal regime made it
possible to analyse the notion of a constant of
heat inertia and gave a new method for its ex-
perimental determination. It is rather easy to
show that the value of e is a convenient measure
of the thermal inertia characteristic of an
arrangement; ¢ = m~!, where m is the rate of
cooling. Using equations (9), (10) and (20) we
can find the dependence of the thermal inertia
constant e upon the heat transfer coefficient and
this dependence is called the characteristic curve
of heat inertia.

Recently Soviet scientists successfully com-
pleted investigations on heat inertia of various
engineering arrangements based on an applica-
tion of the regular regime theory [2, 10, 19).

(d) Thermal calculations

The theory of a regular thermal regime per-
mits us to make approximate thermal calcula-
tions for various complex arrangements. For
example, using the formulae of Section 4[2] it
is possible to calculate the heat insulation of
different units (aggregates) operating in unsteady
state conditions [2].

Formulae (9) and (10) serve to elucidate the
influence of the shape and size of a body upon the
rate of its cooling or heating which is of special
importance for the theory of thermal treatment.

The theory of regular regime, developed for
bodies and systems with energy sources, has been
used on a large scale for the last few years in
the study of unstable processes in a complicated
apparatus such as in a radio-electronic tech-
nique, which is a complex of cables set in piles.
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